понедельник, 15 сентября 2014 г.

Представление чисел в компьютере

Целые числа в  компьютере.
Вся информация, обрабатываемая современными компьютерами, хранится в них в двоичном виде. Каждая ячейка памяти компьютера состоит из некоторого числа однородных элементов, обладающих двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое — единице. Каждый элемент ячейки служит для изображения одного разряда двоичного числа. Именно поэтому каждый элемент ячейки называют разрядом.
Знаковое представление чисел в компьютере.
Для человека привычна запись числа в виде «знак-величина». Чтобы и в компьютере представлять числа в привычном для человека виде, необходимо самый левый разряд ячейки отвести для записи знака числа. При записи положительного числа в самый левый разряд ячейки, который называется знаковым, записывается 0, при записи отрицательного числа 1. То есть при знаковом представлении чисел 0 в самом левом разряде ячейки соответствует знаку плюс, а единица – знаку минус. Очевидно, что модуль числа можно записывать только в оставшихся k – 1 разрядах. Такое представление чисел называется прямым кодом.
Прямой код положительного числа отличается от прямого кода такого же по модуля отрицательного числа только содержанием знакового разряда. Однако для представления отрицательных чисел в компьютере используется дополнительный код(см. ниже).
В k-разрядной ячейке при представлении целых знаковых чисел умещаются числа [-2k –1, 2k–1–1]. Например, для 8-разрядной ячейки это диапазон [-128, 127]. Таким образом, при программировании нужно помнить о том, что:

  • количество представимых чисел в k разрядах ограничено и зависит от k;
  • диапазон знаковых чисел, представимых в k-разрядной ячейке, не симметричен относительно 0. 
Запишем максимальные и минимальные числа, которые можно записать в 8, 16 и 32 разрядах при знаковом представлении.

Количество разрядов Минимальное число Максимальное число
8 –27 = –128 27 – 1 = 127
16 –215 = –32768 215 – 1 = 32767
32 –231 = –2147483648 231 – 1 = 2147483647 
Беззнаковое представление положительных целых чисел в компьютере.
Так как в компьютере все данные хранятся в двоичном виде, то чтобы получить представление целого положительного числа в компьютере, сначала это число необходимо перевести в двоичную систему счисления. Если двоичное число состоит не более чем из k цифр, то это число можно записать в k-разрядной ячейке памяти, дополнив нулями слева до k разрядов.
Очевидно, что самое большое целое положительное число, которое мы можем записать в k разрядах, состоит из единиц во всех разрядах ячейки. Если перевести это число в десятичную систему счисления, то оно равно 2k – 1. Минимальное число состоит из нулей во всех разрядах и равно 0.
Запишем максимальные числа, которые можно вместить в 8, 16, 32 разрядах.
Количество разрядов Максимальное число
8 28 – 1 = 255
16 216 – 1 = 65535
32 232 – 1 = 4294967295
Алгоритм построения дополнительного кода.
В k-разрядной целочисленной компьютерной арифметике 2k = 0, так как единица в самом старшем разряде числа 2k должна стоять в k+1 разряде и следовательно, «выползает» за границы ячейки. Дополнительный код отрицательного числа, записанный в k-разрядной ячейке, заменяет это отрицательное число на дополнение его модуля до числа 2k. То есть дополнительный код отрицательного числа m равен 2k – |m|. Такая замена позволяет заменить операцию вычитания чисел на операцию сложения. Действительно, если в 8-разрядной ячейке сложить числа 5 и –6, где вместо –6 написано число (28 – 6), то получится 5 + (28 – 6) = 28 – 1, что будет соответствовать записи числа –1.
Поэтому для k-разрядной ячейки дополнительный код отрицательного числа можно получить следующим образом:

  1. Модуль числа представляется прямым кодом в k разрядах.
  2. В прямом коде все нули заменяются на единицы, а единицы – на нули. Таким образом получаем обратный код.
  3. К полученному обратному коду прибавляется единица. 
Алгоритм получения числа по дополнительному коду.
  1. Провести обратную цепочку преобразований: вычесть единицу из дополнительного кода числа, инвертировать полученный результат и перевести его в десятичную систему счисления.
  2. Построить дополнительный код для имеющегося дополнительного кода и перевести результат в десятичную систему счисления.

 

Комментариев нет:

Отправить комментарий